
12/29/2020 High-Level Console Modes - Windows Console | Microsoft Docs

https://docs.microsoft.com/en-us/windows/console/high-level-console-modes?redirectedfrom=MSDN 1/4

High-Level Console Modes
07/12/2018 • 6 minutes to read •

The behavior of the high-level console functions is affected by the console input and output modes.
All of the following console input modes are enabled for a console's input buffer when a console is
created:

Line input mode
Processed input mode
Echo input mode

Both of the following console output modes are enabled for a console screen buffer when it is created:

Processed output mode
Wrapping at EOL output mode

All three input modes, along with processed output mode, are designed to work together. It is best to
either enable or disable all of these modes as a group. When all are enabled, the application is said to
be in "cooked" mode, which means that most of the processing is handled for the application. When
all are disabled, the application is in "raw" mode, which means that input is unfiltered and any
processing is left to the application.

An application can use the GetConsoleMode function to determine the current mode of a console's
input buffer or screen buffer. You can enable or disable any of these modes by using the following
values in the SetConsoleMode function. Note that setting the output mode of one screen buffer does
not affect the output mode of other screen buffers.

If the hConsoleHandle parameter is an input handle, the mode can be one or more of the following
values. When a console is created, all input modes except ENABLE_WINDOW_INPUT are enabled by
default.

Value Meaning

ENABLE_ECHO_INPUT 0x0004 Characters read by the ReadFile or ReadConsole function are written
to the active screen buffer as they are read. This mode can be used
only if the ENABLE_LINE_INPUT mode is also enabled.

ENABLE_INSERT_MODE 0x0020 When enabled, text entered in a console window will be inserted at
the current cursor location and all text following that location will not
be overwritten. When disabled, all following text will be overwritten.

ENABLE_LINE_INPUT 0x0002 The ReadFile or ReadConsole function returns only when a carriage
return character is read. If this mode is disabled, the functions return
when one or more characters are available.

https://github.com/miniksa
https://github.com/bitcrazed
https://github.com/VSC-Service-Account
https://github.com/mattwojo
https://docs.microsoft.com/en-us/windows/console/getconsolemode
https://docs.microsoft.com/en-us/windows/console/setconsolemode
https://msdn.microsoft.com/library/windows/desktop/aa365467
https://docs.microsoft.com/en-us/windows/console/readconsole
https://msdn.microsoft.com/library/windows/desktop/aa365467
https://docs.microsoft.com/en-us/windows/console/readconsole

12/29/2020 High-Level Console Modes - Windows Console | Microsoft Docs

https://docs.microsoft.com/en-us/windows/console/high-level-console-modes?redirectedfrom=MSDN 2/4

Value Meaning

ENABLE_MOUSE_INPUT 0x0010 If the mouse pointer is within the borders of the console window and
the window has the keyboard focus, mouse events generated by
mouse movement and button presses are placed in the input buffer.
These events are discarded by ReadFile or ReadConsole, even when
this mode is enabled.

ENABLE_PROCESSED_INPUT 0x0001 CTRL+C is processed by the system and is not placed in the input
buffer. If the input buffer is being read by ReadFile or ReadConsole,
other control keys are processed by the system and are not returned
in the ReadFile or ReadConsole buffer. If the ENABLE_LINE_INPUT
mode is also enabled, backspace, carriage return, and line feed
characters are handled by the system.

ENABLE_QUICK_EDIT_MODE 0x0040 This flag enables the user to use the mouse to select and edit text.

To enable this mode, use ENABLE_QUICK_EDIT_MODE |
ENABLE_EXTENDED_FLAGS . To disable this mode, use
ENABLE_EXTENDED_FLAGS without this flag.

ENABLE_WINDOW_INPUT 0x0008 User interactions that change the size of the console screen buffer are
reported in the console's input buffer. Information about these events
can be read from the input buffer by applications using the
ReadConsoleInput function, but not by those using ReadFile or
ReadConsole.

ENABLE_VIRTUAL_TERMINAL_INPUT
0x0200

Setting this flag directs the Virtual Terminal processing engine to
convert user input received by the console window into Console
Virtual Terminal Sequences that can be retrieved by a supporting
application through WriteFile or WriteConsole functions.

The typical usage of this flag is intended in conjunction with
ENABLE_VIRTUAL_TERMINAL_PROCESSING on the output handle to
connect to an application that communicates exclusively via virtual
terminal sequences.

If the hConsoleHandle parameter is a screen buffer handle, the mode can be one or more of the
following values. When a screen buffer is created, both output modes are enabled by default.

Value Meaning

ENABLE_PROCESSED_OUTPUT 0x0001 Characters written by the WriteFile or WriteConsole function
or echoed by the ReadFile or ReadConsole function are
parsed for ASCII control sequences, and the correct action is
performed. Backspace, tab, bell, carriage return, and line feed
characters are processed.

https://msdn.microsoft.com/library/windows/desktop/aa365467
https://docs.microsoft.com/en-us/windows/console/readconsole
https://msdn.microsoft.com/library/windows/desktop/aa365467
https://docs.microsoft.com/en-us/windows/console/readconsole
https://docs.microsoft.com/en-us/windows/console/readconsoleinput
https://msdn.microsoft.com/library/windows/desktop/aa365467
https://docs.microsoft.com/en-us/windows/console/readconsole
https://docs.microsoft.com/en-us/windows/console/console-virtual-terminal-sequences
https://msdn.microsoft.com/library/windows/desktop/aa365747
https://docs.microsoft.com/en-us/windows/console/writeconsole
https://msdn.microsoft.com/library/windows/desktop/aa365747
https://docs.microsoft.com/en-us/windows/console/writeconsole
https://msdn.microsoft.com/library/windows/desktop/aa365467
https://docs.microsoft.com/en-us/windows/console/readconsole

12/29/2020 High-Level Console Modes - Windows Console | Microsoft Docs

https://docs.microsoft.com/en-us/windows/console/high-level-console-modes?redirectedfrom=MSDN 3/4

Value Meaning

ENABLE_WRAP_AT_EOL_OUTPUT 0x0002 When writing with WriteFile or WriteConsole or echoing with
ReadFile or ReadConsole, the cursor moves to the beginning
of the next row when it reaches the end of the current row.
This causes the rows displayed in the console window to scroll
up automatically when the cursor advances beyond the last
row in the window. It also causes the contents of the console
screen buffer to scroll up (../discarding the top row of the
console screen buffer) when the cursor advances beyond the
last row in the console screen buffer. If this mode is disabled,
the last character in the row is overwritten with any
subsequent characters.

ENABLE_VIRTUAL_TERMINAL_PROCESSING
0x0004

When writing with WriteFile or WriteConsole, characters are
parsed for VT100 and similar control character sequences that
control cursor movement, color/font mode, and other
operations that can also be performed via the existing Console
APIs. For more information, see Console Virtual Terminal
Sequences.

DISABLE_NEWLINE_AUTO_RETURN 0x0008 When writing with WriteFile or WriteConsole, this adds an
additional state to end-of-line wrapping that can delay the
cursor move and buffer scroll operations.

Normally when ENABLE_WRAP_AT_EOL_OUTPUT is set and
text reaches the end of the line, the cursor will immediately
move to the next line and the contents of the buffer will scroll
up by one line. In contrast with this flag set, the scroll
operation and cursor move is delayed until the next character
arrives. The written character will be printed in the final
position on the line and the cursor will remain above this
character as if ENABLE_WRAP_AT_EOL_OUTPUT was off, but
the next printable character will be printed as if
ENABLE_WRAP_AT_EOL_OUTPUT is on. No overwrite will
occur. Specifically, the cursor quickly advances down to the
following line, a scroll is performed if necessary, the character
is printed, and the cursor advances one more position.

The typical usage of this flag is intended in conjunction with
setting ENABLE_VIRTUAL_TERMINAL_PROCESSING to better
emulate a terminal emulator where writing the final character
on the screen (../in the bottom right corner) without triggering
an immediate scroll is the desired behavior.

https://msdn.microsoft.com/library/windows/desktop/aa365747
https://docs.microsoft.com/en-us/windows/console/writeconsole
https://msdn.microsoft.com/library/windows/desktop/aa365467
https://docs.microsoft.com/en-us/windows/console/readconsole
https://msdn.microsoft.com/library/windows/desktop/aa365747
https://docs.microsoft.com/en-us/windows/console/writeconsole
https://docs.microsoft.com/en-us/windows/console/console-virtual-terminal-sequences
https://msdn.microsoft.com/library/windows/desktop/aa365747
https://docs.microsoft.com/en-us/windows/console/writeconsole

12/29/2020 High-Level Console Modes - Windows Console | Microsoft Docs

https://docs.microsoft.com/en-us/windows/console/high-level-console-modes?redirectedfrom=MSDN 4/4

Is this page helpful?

 Yes No

Value Meaning

ENABLE_LVB_GRID_WORLDWIDE 0x0010 The APIs for writing character attributes including
WriteConsoleOutput and WriteConsoleOutputAttribute allow
the usage of flags from character attributes to adjust the color
of the foreground and background of text. Additionally, a
range of DBCS flags was specified with the COMMON_LVB
prefix. Historically, these flags only functioned in DBCS code
pages for Chinese, Japanese, and Korean languages.

With exception of the leading byte and trailing byte flags, the
remaining flags describing line drawing and reverse video
(../swap foreground and background colors) can be useful for
other languages to emphasize portions of output.

Setting this console mode flag will allow these attributes to be
used in every code page on every language.

It is off by default to maintain compatibility with known
applications that have historically taken advantage of the
console ignoring these flags on non-CJK machines to store
bits in these fields for their own purposes or by accident.

Note that using the
ENABLE_VIRTUAL_TERMINAL_PROCESSING mode can result in
LVB grid and reverse video flags being set while this flag is still
off if the attached application requests underlining or inverse
video via Console Virtual Terminal Sequences.

https://docs.microsoft.com/en-us/windows/console/writeconsoleoutput
https://docs.microsoft.com/en-us/windows/console/writeconsoleoutputattribute
https://docs.microsoft.com/en-us/windows/console/console-screen-buffers#character-attributes
https://docs.microsoft.com/en-us/windows/console/console-virtual-terminal-sequences

